Altered nitric oxide production mediates matrix-specific PAK2 and NF-κB activation by flow

نویسندگان

  • Arif Yurdagul
  • Jie Chen
  • Steven Daniel Funk
  • Patrick Albert
  • Christopher G. Kevil
  • A. Wayne Orr
چکیده

Shear stress generated by distinct blood flow patterns modulates endothelial cell phenotype to spatially restrict atherosclerotic plaque development. Signaling through p21-activated kinase (PAK) mediates several of the deleterious effects of shear stress, including enhanced NF-κB activation and proinflammatory gene expression. Whereas shear stress activates PAK in endothelial cells on a fibronectin matrix, basement membrane proteins limit shear-induced PAK activation and inflammation through a protein kinase A-dependent pathway; however, the mechanisms underlying this regulation were unknown. We show that basement membrane proteins limit membrane recruitment of PAK2, the dominant isoform in endothelial cells, by blocking its interaction with the adaptor protein Nck. This uncoupling response requires protein kinase A-dependent nitric oxide production and subsequent PAK2 phosphorylation on Ser-20 in the Nck-binding domain. Of importance, shear stress does not stimulate nitric oxide production in endothelial cells on fibronectin, resulting in enhanced PAK activation, NF-κB phosphorylation, ICAM-1 expression, and monocyte adhesion. These data demonstrate that differential flow-induced nitric oxide production regulates matrix-specific PAK signaling and describe a novel mechanism of nitric oxide-dependent NF-κB inhibition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uncoupling protein-2 increases nitric oxide production and TNFAIP3 pathway activation in pancreatic islets

Mutations in the uncoupling protein 2 (Ucp2) gene are linked to type-2 diabetes. Here, a potential mechanism by which lack of UCP2 is cytoprotective in pancreatic β-cells was investigated. Nitric oxide (NO) production was elevated in Ucp2(-/-) islets. Proliferation (cyclin D2, Ccnd2) and anti-apoptosis (Tnfaip3) genes had increased expression in Ucp2(-/-) islets, whereas the mRNA of pro-apoptos...

متن کامل

LECT2 association with macrophage-mediated killing of Helicobacter pylori by activating NF-κB and nitric oxide production.

Helicobacter pylori employs unique methods to colonize the stomach, which induces chronic inflammation. It is also able to avoid eradication by macrophages and other immune cells. Leukocyte cell-derived chemotaxin 2 (LECT2), a multi-functional cytokine involved in many pathological conditions, has recently been shown to activate macrophages via the CD209a receptor. Therefore, we aimed to invest...

متن کامل

NF-κB and its upstream protein caspase-3, and reduced the LPS-induced production of nitric oxide, inducible nitric oxide synthase, tumor necrosis factor

Heat shock protein (HSP)60 is primarily a mitochondrial protein. Previous experiments have found that changes in the location of intracellular HSP60 have been associated with apoptosis. Extracellular HSP60 mediates apoptosis via its ligand, Toll-like receptor (TLR)-4. TLR-4 is an important factor expressed on microglia, with a central role in generating neuroimmune responses in the pathogenesis...

متن کامل

Comparative evaluation of the effects of platelet-rich plasma formulations on extracellular matrix formation and the NF-κB signaling pathway in human articular chondrocytes

Concentrated leukocytes in leukocyte and platelet‑rich plasma (L‑PRP) may deliver increased levels of pro‑inflammatory cytokines to activate the nuclear factor (NF)‑κB signaling pathway, to counter or overwhelm the beneficial effects of growth factors on cartilage regeneration. However, to date, no relevant studies have substantiated this. In the present study, L‑PRP and pure platelet‑rich plas...

متن کامل

Dengue Virus Infection Causes the Activation of Distinct NF-κB Pathways for Inducible Nitric Oxide Synthase and TNF-α Expression in RAW264.7 Cells

Infection with dengue virus (DENV) causes an increase in proinflammatory responses, such as nitric oxide (NO) generation and TNF-α expression; however, the molecular mechanism underlying this inflammatory activation remains undefined, although the activation of the transcription factor NF-κB is generally involved. In addition to TNF-α production in DENV-infected murine macrophage RAW264.7 cells...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2013